
	1	

Application of Unit Tests for Genie 
	

James	Jones	
	

SIST	Intern,	Summer	2016	
	

Fermilab	National	Accelerator	Laboratory	
Department	of	Scientific	Computing	

Supervisor:	Gabriel	Perdue	
August	18,	2016	

	
	
	
	
	
	
	
	

	
ABSTRACT	

	
Test-driven	development	is	a	type	of	software	development	in	which	the	user	creates	
certain	tests	that	the	software	needs	to	be	able	pass	before	the	software	is	designed.	This	
assures	that	the	software	is	developed	the	way	it	needs	to	be	and	allows	the	developer	to	
debug	while	they	are	designing	the	software.	One	such	test	driven	development	strategy	is	
the	unit	test.	A	series	of	tests	designed	to	test	pieces	of	the	designed	software	piece	by	
piece	
	
My	goal	this	summer	was	to	look	into	the	application	of	Unit	Tests	for	GENIE,	the	Neutrino	
Monte	Carlo	Generator,	which	has	no	type	of	testing	for	it.	The	following	contains	a	brief	
intro	to	GENIE,	as	well	as	the	research	and	application	process	that	went	into	designing	
such	Unit	Tests.	 	

08	Fall	



	

INTODUCTION	TO	GENIE	

	 GENIE	is	a	suite	of	products	
(Generator,	Comparisons,	Tuning)	for	the	
experimental	neutrino	community.	GENIE	
uses	a	framework	neutrino	Monte	Carlos	
(a	series	of	computational	algorithms)	in	
order	to	simulate	detailed	experimental	
setups	involving	neutrinos,	from	
implementing	flux	drivers	to	calculating	
cross	sections	from	the	collision	between	
a	neutrino	and	a	target.		This	allows	users	
to	create	their	own	hypothetical	
experiments	and	run	them	on	GENIE	in	
order	to	see	what	happens.	It	can	also	be	
used	by	physicists	already	working	on	a	
neutrino	experiment	in	order	to	both	
predict	the	data	that	will	be	gathered	as	
well	as	make	sure	that	the	data	gathered	
matches	what	is	supposed	to	happen.	The	
GENIE	project	is	added	onto	an	updated	
by	a	global	group	of	physicists	working	on	
the	major	neutrino	experiments.	
Presently,	GENIE	is	being	used	by	a	
majority	of	neutrino	experiments,	
including	those	using	the	JPARC	and	NuMI	
neutrino	beam	lines.	GENIE	takes	on	an	
important	role	in	the	design	and	
execution	of	these	experiments.	It	is	used	
to	evaluate	the	feasibility	of	proposed	
projects	and	estimate	their	physics	
impact,	make	decisions	about	detector	
design	and	optimization,	analyze	the	
collected	data	samples,	and	evaluate	
systematic	errors.	It	is	projected	to	be	an	
important	physics	tool	for	the	
exploitation	of	the	world	accelerator	
neutrino	program	[1]	[2].	

	 The	GENIE	software	uses	a	
collection	of	classes	that	contains	certain	
data	and	algorithms	that	can	be	accessed	
and	used,	depending	on	what	the	user	
requests	done	via	the	command	line	
interface.	For	example,	the	cross	section	
model	in	GENIE	provides	the	calculation	
of	differential	and	total	cross	sections.	
During	the	event	generation	the	total	
cross	section	is	used	together	with	the	
flux	to	determine	the	energies	of	
interacting	neutrinos.	The	cross	sections	
for	specific	processes	are	then	used	to	
determine	which	interaction	type	occurs,	
and	the	differential	distributions	for	that	
interaction	model	are	used	to	determine	
the	event	kinematics. [1]. 

GENIE	is	a	publically	available	program	
and	can	be	operated	via	the	command	
line	interface.	For	example	the	code	for	
generating	a	cross	section	is:	

gmkspl	–p		#	-t	#	-o	myxsec.xml:	

-p	specifying	the	neutrino	PDG	code,	-t	
specifying	the	target	PDG	code,	and	–o	

Figure	1:	Piece	of	code	to	a	cross	
section	calculation	shows	the	inter-
play	between	classes.	



	3	

specifying	the	name	of	the	XML	file	that	
these	cross	sections	can	me	written	in	to.		
For	example	the	instruction	to	calculate	
the	Xsec	splines	for	a	muon	neutrino	
(PDG	code:	14)	scattered	of	Fe56	(PDG	
code:	1000260560)	and	place	it	in	an	
XML	file	called	cross_sections.xml	is:	

gmkspl	–p	14	–t	1000260560	–o	
cross_sections.xml	

Once	these	instructions	are	entered,	
GENIE	is	able	to	use	its	interconnected	
classes	to	gather	the	data	it	needs	and	
produce	the	correct	cross	sections	for	
such	a	hypothetical	interaction.	

	
INTORDUCTION	TO	UNIT	TESTING	

Unit	testing	is	a	method	for	
software	testing	in	which	fragments	of	
code	are	tested	to	determine	if	they	are	fit	
for	use.	In	this	case	unit	usually	refers	to	
the	smallest	piece	of	code	such	as	a	
variable	definition	or	a	return	value.	Unit	
testing	can	be	used	to	test	things	such	as	
classes,	variables	or	functions	in	order	to	
determine	that	they	work	correctly	and	
return	what	is	expected	to	be	returned	

[4].	Such	tests	are	applied	throughout	the	
code	in	order	to	make	sure	that	every	
fraction	of	the	code	is	working	
appropriately.	For	example,	part	of	a	unit	
test	within	GENIE	could	test	the	XSec()	
function	within	the	LlewellynSmith	class	
to	make	sure	that	the	function	returns	the	
correct	cross	section	value.			
	 While	Unit	testing	can	be	very	
useful,	it	comes	with	both	benefits	and	
certain	limitations.	The	benefits	lie	in	the	
fact	that	applying	a	unit	testing	method	to	
ones	code,	will	allow	errors	and	mistakes	
to	be	caught	earlier	and	easily.	It	also	
allows	one	to	be	able	to	modify	their	code	
without	fear,	for	if	created	properly,	a	unit	
test	should	be	able	to	tell	if	the	modified	
code	works	as	well	as	the	original.	
However,	unit	testing	is	limited	in	the	fact	
that	a	unit	test	will	only	be	as	thorough	as	
the	programmer	designs	it	to	be.	A	very	
thorough	unit-testing	program	calls	for	
many	hours	of	tedious,	and	boring	work;	
hours	that	a	programmer	may	not	want	to	
put	in.	Even	if	the	unit	test	is	thorough,	
there	is	still	a	probability	that	mistakes	
may	be	able	to	get	past	the	tests,	if	it’s	not	
thorough	enough	and	the	wrong	things	
are	tested.	This	would	call	for	the	
programmer	to	return	and	redesign	their	
tests.	
	 	

Each	Unit	test	is	built	using	a	unit	
test	framework;	functions	and	languages	
that	allow	for	easier	unit	testing.	In	order	
to	do	this	for	GENIE,	which	uses	C++,	a	
language	that	does	not	have	its	own	built	
in	framework,	I	had	to	research,	choose	
and	download	an	already	existing	
framework	that	could	be	combined	with	
and	work	coherently	with	C++.	

	
BOOST	

BOOST	is	a	set	of	libraries	for	C++	
that	gives	C++	programs	the	ability	to	
support	things	such	as,	number	

Figure	2:	GENIE’s	individual	classes	
contain	unique	information	and	
functions	that	can	be	accessed	
depending	on	the	task.	



	4	

generation,	linear	algebra	and	unit	
testing.	After	doing	research	on	C++	unit	
testing	frameworks,	I	decided	to	use	the	
BOOST	unit-testing	framework	because	it	
had	the	most	advantages	over	
disadvantages	from	the	recommended	
frameworks.	Within	the	BOOST	unit-
testing	framework	it	is	easy	to	add	new	
tests	and	to	test	things	within	the	code.	It	
is	also	able	to	handle	crashes	well.	The	
one	disadvantage	that	comes	with	BOOST	
is	that	it	requires	the	programmer	to	
include	some	external	libraries	before	
creating	the	unit	test.	

	
Within	the	BOOST	unit-testing	

framework	there	are	BOOST	functions,	
which	are	designed	specifically	for	
running	tests	within	the	unit	test	and	for	
separating	and	organizing	tests.	Before	
discussing	the	functions	it	is	important	to	
discuss	the	organization	tools:	
BOOST_AUTO_TEST_SUITE	
BOOST_AUTO_TEST_CASE.	
These	are	used	to	organize	the	unit	test	so	
that	like	functions	can	be	tested.	For	
example,	if	I	wanted	to	test	all	physics	
related	functions	within	my	code	I	would	
create	a	BOOST_AUTO_TEST_SUITE	
named	physics.	Then	if	within	this	suite	I	
wanted	to	functions	having	to	do	with	
acceleration	and	functions	having	to	do	
with	force,	I	would	create	two	
BOOST_AUTO_TEST_CASEs	named,	
acceleration	and	force.	It	is	within	these	
test	cases	that	the	functions	can	be	tested	
for	correctness.	

	
	

	

Utilizing	both	the	test	suites	and	
the	test	cases	are	useful	for	organizing	the	
unit-test	and	will	allow	users	to	more	
easily	determine	where	errors	are	and	
what	they	might	be.	

Once	the	suites	and	cases	are	set	
up	it	is	within	the	cases	that	the	
programmer	can	test	certain	aspects	of	
their	code.	In	order	to	do	this,	BOOST	has	
created	functions	of	their	own	that	check	
different	things	and	respond	in	different	
ways.	These	functions	are	used	to	check	
the	validity	of	the	functions	given	to	them.	

In	Figure	5	several	different	
BOOST	unit-test	functions	can	be	seen,	
each	having	different	requirements	and	
responses.	The	simplest	of	these	
functions	is	BOOST_CHECK.	
BOOST_CHECK	can	be	used	to	make	sure	
a	function	has	the	correct	output,	such	as	
BOOST_CHECK	(add(2,2)	==	4),	which	

Figure	3:	BOOST	has	it’s	own	functions	
which	make	creating	unit	tests	easy.	

Figure	4:	Shows	how	BOOST	can	
organize	test	types	for	more	efficient	
testing.	
	

Figure	5:	Examples	of	the	BOOST	unit-test	
functions	



	5	

makes	sure	that	the	function	that	adds	
two	numbers	works	correctly.	It	can	also	
be	used	with	Booleans	to	make	sure	that	
they	return	true:	BOOST_CHECK	
(physics.isvalid()).	
When	the	BOOST_CHECK	function	
encounters	an	error	it	displays	a	default	
error	message,	including	the	source	file	
name,	source	file	line	umber,	and	
expression	that	failed.	BOOST_CHECK	
differs	from	the	other	functions	in	that	if	
the	function	encounters	an	error	it	will	
report	it	and	move	on	instead	of	stopping	
the	unit-test[3].	
	 BOOST_REQUIRE	is	a	function	that	
works	exactly	like	BOOST_CHECK.	
However	if	BOOST_REQUIRE	encounters	
and	error	it	does	not	move	on,	but	instead	
reports	the	error	and	terminates	the	
program.	This	function	is	likely	to	be	used	
over	BOOST_CHECK	when	testing	a	
function	that	is	imperative	to	the	rest	of	
the	code	and	who’s	failure	would	make	
future	testing	unfeasible	or	inaccurate.	
	 BOOST_ERROR	is	a	function	that	
does	not	detect	an	error,	but	instead	can	
work	with	another	function	such	as	an	IF	
statement	to	produce	a	specialized	error	
message	to	the	user.	This	can	be	used	if	
the	programmer	has	a	specific	message	
they	want	to	send	about	the	function	
being	tested.	Once	the	BOOST_ERROR	is	
used,	like	BOOST_CHECK,	the	unit-test	
continues	to	run.	However,	BOOST_FAIL	
is	another	function	like	BOOST_ERROR,	
accept	when	it	is	used	the	unit-test	is	
halted	[3].	
	
	
	
	
	
	

	
	

	
The	last	two	simple	BOOST	unit-

test	functions,	work	like	a	combination	of	
the	already	existing	ones.		
BOOST_CHECK_MESSAGE	works	like	a	
combination	of	BOOST_CHECK	and	
BOOST_ERROR,	checking	a	function	to	see	
if	it	works	and	then	generating	a	custom	
message	after	it	does	so.	
BOOST_CHECK_EQUAL	works	like	
BOOST_CHECK	but	is	made	specifically	to	
test	if	the	two	arguments	given	to	it	are	
equal.		While	all	of	these	BOOST	unit-test	
functions	are	alike,	their	minor	
differences	allor	programmers	to	be	able	
to	customize	how	they	want	their	unit-
test	to	work	and	what	they	want	it	to	
look,	like.		

	
APPLYING	BOOST	UNIT	TESTING	

	 After	building	BOOST	and	learning	
how	to	use	its	unit-testing	framework,	my	
next	step	was	to	figure	out	how	to	
combine	it	with	GENIE	so	that	we	can	
apply	such	a	unit-testing	framework.	
Creating	a	unit	test	for	GENIE	is	not	
difficult.	The	difficult	part	is	working	with	
all	of	GENIE’s	classes	in	order	to	build	the	
correct	classes	and	functions	so	that	the	
right	values	can	be	tested.	
	 Our	first	attempt	to	get	a	proper	
working	unit-test	with	GENIE	involved	
me	trying	to	test	a	cross	section	value	
(xsec)	in	the	function	XSEC	of	the	
LlewellynSmith	class.	In	the	file	
LwlynSmithQELCCPXSec.h	the	function	
Xsec	can	be	found	as	well	as	the	
arguments	it	needs.	 
	

	
	

Figure	6:	An	example	of	BOOST_ERROR	
and	BOOST_FAIL	being	used.	
	



	6	

To	begin	the	program	we	first	included	
the	BOOST	library	that	grants	us	access	to	
the	unit	test	framework,	all	the	header	
files	of	the	classes	that	we	knew	the	
function	XSEC	relied	on.	
	

Before	working	with	the	XSec	
function	(figure	7),	it	is	important	to	
realize	the	arguments	that	it	takes	and	
figure	out	how	to	provide	those	before	
calling	the	function.	It	can	be	seen	that	
XSec	takes	pointer	to	a	GENIE	class	called	
“interaction”	and	another	variable,	
KinePhaseSpace_t	k,	which	(through	some	
serious	digging)	we	discovered	is	actually	
just	a	number.	So	before	calling	the	XSec	
function	we	had	to	create	a	pointer	to	the	
class	and	create	a	variable	that	is	the	
same	number	as	KinePhaseSpace_t	k.	

	
	
	
	
	
	
	
	
	

	

Once	the	variables	and	pointers	are	set	
up,	assuming	they	are	done	correctly,	the	
desired	number	should	be	able	to	be	
accessed	and	tested	by	the	unit-test.	

	
By	calling	on	the	XSec	function	in	the	
LlewellynSmith	class	and	placing	that	
inside	the	BOOST_CHECK	function,	one	
can	check	that	whatever	that	function	
returns	is	what	it	should	be.	
	 Theoretically,	if	all	the	classes	and	
variables	are	instantiated	correctly,	this	
should	be	how	to	test	a	function	in	the	
LlewellynSmith	class.	However,	when	
attempted	the	XSec	function	reported	that	
the	cross	section	was	0,	which	means	that	
something	in	the	function	failed	because	a	
piece	of	the	code	was	not	initiated	
correctly.	Using	gdb,	it	was	discovered	
that	the	XSec	function	failed	because	a	
function	within	another	class	failed.	
ValidProcess	is	a	boolean	within	the	
LlewellynSmith	class.	At	first	we	believed	

Figure	7:	The	XSec	function	with	its	
arguments.	

Figure	8:	BOOST	unit-test	frameworks	
and	class	header	files	are	included.	

Figure	9:	The	pointer	to	the	interaction	
class	and	the	KinePhaseSpace	variable	
are	initiated	with	other	variables	when	
the	BOOST	suite	first	opens	

Figure	10:	The	pointers	are	set	up	and	
the	function	is	tested	in	BOOST	



	7	

that	it	failed	because	we	hadn’t	included	
the	correct	classes;	but	after	a	long	period	
of	trial	and	error	(almost	three	weeks)	we	
still	could	not	figure	out	why	Valid	
Process	failed.	In	the	end	we	decided	to	
try	a	simpler	test,	in	order	to	prove	that	a	
BOOST	unit-test	works	with	GENIE.	This	
new	test	was	designed	to	test	only	
Booleans	in	the	ProcessInfo	class,	using	
BOOST_CHECK	to	simply	see	if	the	
Booleans	returned	a	1	or	a	0.	This	test	
was	began	the	same	way	the	previous	one	
had	been,	including	the	same	classes	and	
initiating	the	same	pointers.	However,	
because	we	were	only	testing	Booleans	
there	was	nothing	that	could	fail	so	the	
test	was	successful,	proving	that	it	is	
possible	to	design	a	unit-test	for	GENIE	
using	the	BOOST	framework.	

	 Upon	proper	compilation	and	
running	of	the	program	is	designed	to	tell	
the	user	if	any	errors	were	encountered	
and	where	they	were	encountered.	This	
allows	the	user	to	easily	find	and	fix	
whatever	is	wrong	with	the	program.	For	
example,	figure	12	shows	the	results	of	

running	the	code	in	figure	10.	It	can	be	
seen	that	when	checked	to	see	if	they	
returned	false,	two	of	the	Booleans	
actually	return	true,	which	means	either	
something	is	wrong	with	the	Booleans	or	
the	unit-test	should	have	checked	if	they	
returned	true	instead	of	false.		

	
While	this	is	only	a	small	unit-test,	testing	
only	a	tiny	fragment	of	the	GENIE	code,	it	
shows	that	using	a	BOOST	unit	test	for	
GENIE	is	possible	and	how	it	would	work.	

	
FUTURE	WORK	AND	PROBLEM	SOLVING	
	
	 After	confirming	that	BOOST	unit-
tests	can	be	used	for	GENIE,	the	next	step	
would	be	to	create	an	infrastructure	so	
that	people	who	use	GENIE	can	also	use	
the	unit-test	program	along	with	it.	This	
involves	using	base	class	with	inheritable	
functions	that	setup	the	needed	classes	
and	run	the	unit-test.	This	is	what	I	am	
currently	working	on	as	of	August	10,	
2016	with	about	a	week	and	a	half	left	of	
the	program.	
	 However,	there	are	still	some	
problems	and	mysteries	with	BOOST	that	

Figure	11:	The	redesigned	unit-test	
tested	only	Booleans	in	the	ProcessInfo	
class	

Figure	12:	The	results	of	running	the	
unit-test	code	from	figure	10	



	8	

need	to	be	solved	before	any	designed	
unit-test	can	run	perfectly.	The	first	is	
that	the	BOOST	unit-test	framework	does	
not	run	with	int	main().	In	fact,	if	int	
main()	is	included	anywhere	within	the	
program,	the	test	will	not	run.	This	makes	
it	a	bit	difficult	to	try	and	do	other	things	
at	the	same	time	that	the	unit-test	is	
running.	However,	the	solution	to	this	
could	simply	be	to	research	more	into	the	
BOOST	syntax.		

Another	problem	encountered	
while	working	with	the	unit-test	was	
getting	the	GENIE	unit-test	to	work	
without	including	the	entire	GENIE	code	
itself.	This	required	using	pointers	to	
open	up	the	right	classes	for	use	and	
initiating	the	right	variables,	so	that	the	
function	that	needed	to	be	tested	could	
run	properly.	This	isn’t	impossible,	but	is	
tricky	and	takes	time,	due	to	the	fact	that	
one	mistake	can	mess	up	the	program,	as	
well	as	the	fact	that	some	functions	are	
very	deep;	they	involve	several	different	
classes	that	need	functions	from	other	
classes	that	need	functions	from	other	
classes	and	so	on.	This	is	the	reason	Valid	
Process,	in	the	xsec	test,	failed;	We	did	not	
go	deep	enough	in	our	investigation	of	the	
multitude	of	functions	it	relies	on	in	order	
to	work	properly.	Therefore	it	is	the	job	of	
the	programmer	to	“go	down	the	rabbit	
hole”,	and	investigate	and	initiate	this	
chain	of	classes	until	they	reach	the	
bottom.	This	is	not	impossible,	but	very	
time	consuming.		

	
CONCLUSION	

It	can	be	seen	BOOST	unit-tests	
can	work	for	GENIE	and	be	quite	simple.	
Although	it	would	take	a	good	amount	of	
time,	it	is	possible	to	create	a	BOOST	unit-
test	that	tests	all	of	GENIE.	Once	
developed	and	applied,	the	GENIE	unit-
test	program	will	allow	scientists	to	
quickly	identify	errors	in	their	code,	as	

well	as	maybe	change	some	pieces	of	the	
program	and	test	that	to	see	if	it	works	
(that	depends	on	the	level	of	detail	of	the	
unit-test	program).	While	it	is	not	
necessary,	test-based	development	is	a	
beneficial	part	of	the	scientific	computing	
community,	for	those	who	are	willing	to	
put	in	the	time	and	effort	to	make	sure	
such	tests	work.	

	
	

References	
[1]	Audreopoulos	et	al.	“The	GENIE	
Neutrino	Monte	Carlo	Generator:	Physics	
&	User’s	Manual”	http://projects-
docdb.fnal.gov/cgi-
bin/RetrieveFile?docid=753&filename=G
ENIE_PhysicsAndUserManual_20100927.
pdf&version=5				
	
[2]	“GENIE	Neutrino	Monte	Carlo”	
http://genie.hepforge.org		
	
[3]	“Unit	Test	Framework:	User’s	Guide”	
http://www.boost.org/doc/libs/1_56_0/l
ibs/test/doc/html/utf/user-guide.html		
	
[4]	 Xie,	Tao.	"Towards	a	Framework	
for	Differential	Unit	Testing	of	
Object-Oriented	Programs"	(PDF)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


